Андрей Смирнов
Время чтения: ~8 мин.
Просмотров: 0

Бестрансформаторный блок питания с регулируемым выходным напряжением

История вопроса и терминология

Первые массово выпускаемые и доступные светодиоды в конце 60-х-начале-70-х годов XX века применялись в целях индикации, а не освещения . В первую очередь из-за их малой световой отдачи, яркости и мощности, а во вторую — потому что они были цветными. Белые сверхъяркие светодиоды, которые сегодня зачастую подразумеваются под понятием «светодиод», среди них отсутствовали. Для питания таких цветных маломощных светодиодов применялись простейшие электронные схемы (см. рис. 1) в виде линейных стабилизаторов (ЛС).

Рисунок 1. Пример принципиальной схемы линейного стабилизатора постоянного тока

Характерной особенностью этих схем являлось отсутствие элементов, накапливающих энергию, таких как дроссели и конденсаторы. Вместо них применялись полупроводниковые элементы, такие как транзисторы, диоды, стабилитроны. В виду своей простоты и малых габаритов данные схемы не выделялись в отдельный источник питания и не имели собственного корпуса. Как правило, они располагались вместе со светодиодами на одной печатной плате.

Появление в 1994 году первого коммерческого яркого синего светодиода послужило толчком к созданию первых белых светодиодов в наиболее распространённом на сегодняшний день виде: с люминофором. Но, несмотря на то, что первые образцы белых светодиодов с люминофорным покрытием появились уже в 1996 году, их высокая стоимость и невысокая по сравнению с современными светодиодами эффективность не способствовали широкому применению в области освещения. Лишь во второй половине 2000-х годов сверхъяркие белые светодиоды начали активно применяться в освещении, постепенно набирая обороты. Мощность этих светодиодов значительно возросла по сравнению с применяемыми для индикации монохромными светодиодами, соответственно, возросли и потери мощности в источнике питания, применение линейных стабилизаторов стало невыгодно.

На сцену вышли электронные импульсные источники питания (ИИП), более дорогие, конструктивно и технологически более сложные, но обладающие гораздо лучшей эффективностью

Кроме того, ИИП позволяли обеспечить более высокую точность и стабильность тока через светодиоды, что было важно для первых коммерчески успешных белых светодиодов, предъявлявших высокие требования к качеству питания

Отличительной особенностью класса импульсных источников питания является обязательное наличие накопительного реактивного элемента (см. рис. 2) (конденсатор, дроссель, трансформатор) и силовых полупроводниковых элементов (транзистор, диод).

Рисунок 2. Структурная схема импульсного источника питания светодиодов на основе понижающего преобразователя постоянного тока

В отличие от схем с линейными стабилизаторами, где полупроводниковые элементы работают непрерывно, в импульсных источниках питания формирование тока через светодиоды обеспечивается короткими импульсами. Во время этих импульсов полупроводниковые элементы включаются и выключаются, обеспечивая накопление поступающей из внешнего источника питания электрической энергии (будь то сеть переменного тока или источник постоянного напряжения) с помощью реактивных элементов, затем выводя эту энергию в нагрузку, на светодиоды. Импульсный принцип работы и дал название всему семейству источников питания.

Современные мощные белые светодиоды значительно дешевле тех, что были доступны на рынке 10 лет назад, а их эффективность значительно выше. При этом требования к качеству питания они предъявляют значительно более мягкие и многое «прощают». Всё это приводит к тому, что для ряда приложений может оказаться выгодным применение электромагнитных источников питания (ЭМИП). Электромагнитные источники питания, как и электронные импульсные, имеют реактивный элемент — дроссель (см. рис. 3), но, в отличие от них, используют его не для накопления энергии, а в качестве реактивного сопротивления для ограничения тока через светодиоды, т.е. дроссель здесь является балластом.

Рисунок 3. Структурная схема электромагнитного источника питания светодиодов

По эффективности ЭМИП превосходят на средних и больших мощностях линейные стабилизаторы, но уступают импульсным. Выгодным отличием электромагнитных источников питания от импульсных является надёжность (меньше элементов — меньше шансов выхода из строя), конструктивная простота, ремонтопригодность, меньшая стоимость.

Какое питание должно быть у светодиодов?

Светодиоды питаются постоянным стабилизированным током. Соответственно светодиод должен получать питание от источника тока. При этом для того, чтобы светодиод начал пропускать ток нужно приложить между анодом и катодом определенное напряжение, чтобы перевести PN-переход в прямое смещение. Для светодиодов разных цветов и мощности это напряжение может отличаться и зависит от материалов, из которых они сделаны. Самый распространенный вариант – светодиоды белого свечения, для их работы нужно подать напряжение порядка 3-3,7 вольт.

Но на практике различают два варианта подключения светодиодов:

  1. К блоку питания, у которого на выходе постоянное напряжение. В этом случае режим работы и рабочий ток светодиода задаётся с помощью токоограничительных резисторов. Пример такого применения — светодиодные ленты, батарейные фонари малой мощности, индикаторные светодиоды, бюджетные лампочки.
  2. К источнику питания, у которого на выходе постоянный ток. В этом случае кроме светодиодов к источнику не подключается никаких резисторов или чего-либо еще. Светодиодов одинаковой мощности может подключаться несколько штук последовательно. Такое решение чаще используется для мощных светодиодов (1 ватт и больше) и светодиодных матриц (мощностью в десятки ватт), на практике встречается в карманных фонариках с мощными светодиодами типа Cree XML разных модификаций, в мощных источниках света типа уличных фонарей и прожекторов, качественных светильниках и светодиодных лампах.

Как подключить к светодиодам

Подключить драйвер к светодиодам можно даже без каких-либо специальных навыков. Контакты и разъемы очень удобно обозначены специальными маркировками на корпусе блока.

Рядом с маркировкой INPUT находятся контакты для подачи входного тока, а надпись OUTPUT обозначает выход прибора

При этом крайне важно соблюдать полярность. Если подключаемое напряжение постоянное, то к контакту с обозначением «+» нужно подключить к положительному полюсу батареи

При использовании переменного напряжения следует учитывать маркировку входных проводов. Если присутствуют буквы «L» и «N», то на «L» подается фаза, а на «N» – ноль. Фазу можно найти при помощи индикаторной отвертки.

Если присутствуют маркировки «~», «АС» или вообще отсутствуют какие-либо обозначения, соблюдение полярности не обязательно.

Рисунок 6. Подключение диодов последовательно

При подключении светодиодов к выходу полярность важно соблюдать в любом случае. В данном случае «плюс» от драйвера подключается к аноду первого светодиода цепи, а «минус» к катоду последнего

Рисунок 7. Параллельное подключение

Наличие в цепи большого количества светодиодов может вызвать необходимость разбить их на несколько групп, соединенных параллельно. Мощность будет складываться из мощностей всех групп, тогда как рабочее напряжение окажется равным показателю одной группы в цепи. Токи в данном случае также складываются.

Какое питание должно быть у светодиодов?

Светодиоды питаются постоянным стабилизированным током. Соответственно светодиод должен получать питание от источника тока. При этом для того, чтобы светодиод начал пропускать ток нужно приложить между анодом и катодом определенное напряжение, чтобы перевести PN-переход в прямое смещение. Для светодиодов разных цветов и мощности это напряжение может отличаться и зависит от материалов, из которых они сделаны. Самый распространенный вариант – светодиоды белого свечения, для их работы нужно подать напряжение порядка 3-3,7 вольт.

Но на практике различают два варианта подключения светодиодов:

  1. К блоку питания, у которого на выходе постоянное напряжение. В этом случае режим работы и рабочий ток светодиода задаётся с помощью токоограничительных резисторов. Пример такого применения — светодиодные ленты, батарейные фонари малой мощности, индикаторные светодиоды, бюджетные лампочки.
  2. К источнику питания, у которого на выходе постоянный ток. В этом случае кроме светодиодов к источнику не подключается никаких резисторов или чего-либо еще. Светодиодов одинаковой мощности может подключаться несколько штук последовательно. Такое решение чаще используется для мощных светодиодов (1 ватт и больше) и светодиодных матриц (мощностью в десятки ватт), на практике встречается в карманных фонариках с мощными светодиодами типа Cree XML разных модификаций, в мощных источниках света типа уличных фонарей и прожекторов, качественных светильниках и светодиодных лампах.

Как проверить драйвер светодиодной лампы

Проверить работу драйвера светодиода можно непосредственно при подключении светильниках к сети. В данном случае надо только убедиться в исправности осветительного прибора, а также отсутствии негативных пульсаций.

Существует способ проверить драйвер и без светодиода. Для этого потребуется подать на него 220 В, а затем измерить показатели на выходе. Показатель должен быть постоянным, по значению немного больше указанного непосредственно на блоке. К примеру. Указанные на блоке значения 28-38 В обозначают выходное напряжение без нагрузки около 40 В. Подобная особенность обусловлена спецификой работы электроприбора.

Рисунок 9. Проверка исправности применяемого светодиодного драйвера

Стоит отметить, что описанный способ проверки не дает полного представления об исправности драйвера. Это связано с тем, что нередко приходится сталкиваться с исправными блоками, которые не включаются вхолостую или же работают нестабильно без нагрузки. Так что выходом представляется подключение к прибору специального загрузочного резистора. Выбрать сопротивление резистора можно по закону Ома с учетом указанных на блоке показателей.

Виды стабилизаторов по типу устройства

Токовые стабилизаторы для светоизлучающих диодов разделяются по типу устройства на импульсные и линейные.

У линейного драйвера выходом является токовый генератор, обеспечивающий плавную стабилизацию выходного тока при неустойчивом входном напряжении, не создавая при этом высокочастотных электромагнитных помех. Такие устройства имеют простую конструкцию и невысокую стоимость, однако не очень высокий КПД (до 80%) сужает область их использования до маломощных LED-элементов и лент.

Линейный стабилизатор тока для светодиодов

Устройства импульсного типа позволяют создавать на выходе череду токовых импульсов высокой частоты. Подобные драйвера работают по принципу широтно-импульсной модуляции (ШИМ), то есть средняя величина тока на выходе определяется отношением ширины импульсов к их частоте. Подобные устройства более востребованы в силу своей компактности и более высокого КПД, составляющего порядка 95%. Однако в сравнении с линейными драйверами ШИМ стабилизаторы имеют больший уровень электромагнитных помех.

Импульсный LED-преобразователь

Последовательное соединение светодиодов

На схеме мы видим традиционное последовательное соединение светодиодов, подключенных к аккумулятору.

Данное соединение предполагает одинаково яркое свечение светодиодов. Но тут нам «мешает» резистор.

Рассмотрим не много другой пример. А именно, возьмем светодиодный драйвер и подключим его к трем последовательным светодиодам.

В результате того, что сила тока в замкнутой цепи одинакова, то и через каждый диод будет течь одинаковый ток I1=I2=I3. Соединение без резистора при помощи драйвера также обеспечивает одинаковую яркость, а разница падения напряжения на диодах не играет никакого значения. Отражается только на величине разности потенциалов между точкой 1 и 2.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации