Андрей Смирнов
Время чтения: ~14 мин.
Просмотров: 0

Особенности светового потока люминесцентных и светодиодных ламп с таблицами

Приборы для измерения оптического излучения

Люксметры нового поколения «ТКА-Люкс»
(рис. 7) и «ТКА-ПКМ-31» являются в настоящее
время самыми востребованными и имеют
метрологические характеристики на уровне
приборов лучших мировых производителей
рабочих средств измерения. Диапазон измерения
освещенности в диапазоне 10–200000 лк
с погрешностью 6–8%.

Рис. 7. Внешний вид люксметра «ТКА-Люкс»

«ТКА-Люкс/Эталон» является первым российским
люксметром, метрологические характеристики
которого отвечают требованиям,
предъявляемым к рабочим эталонам. Он предназначен
для измерения освещенности в видимой
области спектра 380–760 нм, создаваемой
стандартными источниками оптического
излучения, расположенными нормально относительно
приемника. Люксметр предназначен
для практической реализации Государственной
поверочной схемы средств
из мерений световых величин в соответствии
с ГОСТ 8.023-2000. Этот прибор по точности
воспроизведения и передачи размеров единиц
силы света и освещенности обеспечивает метрику
прецизионных и рабочих средств измерений
и отличается временной стабильностью
и достоверностью. Допускаемая прибором
основная относительная погрешность измерения
освещенности не превышает 6,0%.

Разработанный комбинированный прибор
люксметр+яркомер «ТКА-ПКМ» (02) служит
для измерения освещенности (в диапазоне
10–200000 лк с погрешностью 8%) и яркости накладным
способом (в диапазоне 10–200 000 кд/м2
с погрешностью 10%) самосветящихся протяженных
объектов (рис. 8).

Рис. 8. Внешний вид прибора «ТКА-ПКМ» мод.0,2

Прибор отличается от традиционных яркомеров
отсутствием в схеме оптических элементов
(линзы, объектива), что значительно упрощает конструкцию и удешевляет стоимость
прибора при сохранении его точностных характеристик.

Для дистанционного определения яркости
протяженных источников разработан недорогой,
отвечающий современным метрологическим
и техническим требованиям прибор для
измерения яркости киноэкранов яркомер «ТКАЯР» (рис. 9), представляющий собой портативный
малогабаритный прибор с автономным
питанием, снабженный функцией запоминания
результата измерения (Hold). Наводка на измеряемый
объект осуществляется с помощью
лазерного прицела.

Рис. 9. Внешний вид яркомера «ТКА-ЯР»

Для упрощения конструкции прибора
в оптической схеме был применен нефокусируемый
объектив. Нерегулируемая фокусировка
на некоторое постоянное расстояние
повышает оперативность работы с прибором,
так как исключается одна из рабочих операций.
При этом не требуется вводить никаких поправок
к градуировке, поскольку показания
прибора пропорциональны яркости объекта
независимо от расстояния. Прибор имеет
следующие технические характеристики:

  • угол зрения — 1,0–1,5°;
  • диапазон измерения — 10,0–2000,0 кд/м2;
  • спектральная коррекция — 2,0%;
  • суммарная погрешность — 10,0%;
  • расстояние до измеряемого объекта —
    не менее 7,0 м.

Что нужно знать о люксметрах?

При проведении измерений люксметром, важно знать о некоторых особенностях его работы:

  • Если используется аналоговое измерительное оборудования, то до начала проведения замеров стрелка должна находится на нуле.
  • Если прибор показывает освещенность менее 30 люкс, при этом используются насадки на фотоэлемент, продолжать измерения следует без них.
  • Движения прибора непосредственно в процессе замера создают дополнительную погрешность.
  • Посторонние источники света способны значительно исказить результаты замеров.

Из-за высокой стоимости профессиональных люксметров, покупать их для проведения единичных замеров нецелесообразно.

Выгоднее взять прибор в аренду на требуемое время у специализированных компаний, занимающихся продажей геодезического и контрольно-измерительного оборудования.

Модели, предоставляемые подобными фирмами, всегда имеют актуальную поверку.

Измерение цветовых характеристик источников оптического излучения

Общая концепция построения приборов

Приборы ООО «НТП «ТКА» для определения
цветовых характеристик источников (спектроколориметры)
основаны на измерении спектрального
состава оптического излучения с последующей
математической обработкой результатов.

Координаты цвета источников определяются
значениями трех интегралов, взятых в пределах
видимого спектра:

где Феλ(λ) — спектральная плотность потока
излучения; x‾(λ),y‾(λ),z‾(λ) — удельные координаты
цветности.

Координаты цветности рассчитываются:

Фотоприемное устройство спектроколориметра
показано на рис. 16.

Излучение исследуемого источника, пройдя
отделение для формирования пространственной
характеристики (1), попадает в диспергирующее
устройство. Устройство представляет
собой полихроматор (2) с регистрацией разложенного
излучения фотодиодной линейкой
(3). Рабочий спектральный диапазон обусловлен
характером поставленных задач.

При определении коррелированной цветовой
температуры спектральная плотность
энергетической светимости Меλ (Вт·м3) абсолютно
черного тела (АЧТ) определяется в соответствии
с законом Планка по формуле:

Координаты цвета АЧТ при данной температуре
Т рассчитываются по формулам (17).
Затем применяется переход от системы цветовых
координат х, у МКО 1931 г. в более
равноконтрастную систему u’, v’ МКО 1976 г.
по следующим формулам:

Такой же пересчет цветности производится
для исследуемого источника излучения. Затем
определяется массив координат цветности АЧТ
и соответствующий массив температур.

Минимальное расстояние в пространстве u,
v между точкой цветности исследуемого источника
(u0’, v0’) и точками цветности массива
линии АЧТ (ui’, vi’) (рис. 17) определяется
по формуле:

Рис. 17. Линия АЧТ в системе цветовых
координат u’,v’

Затем сопоставляется рассчитанный массив
цветности и массив температур АЧТ и определяется
температура исследуемого источника Тj,
соответствующая определенной точке цветности
(uj, vj).

Разработанный спектроколориметр «ТКА-ВД»
предназначен для определения спектрального
состава источника оптического излучения
с последующим вычислением цветовых координат
в выбранной системе координат (рис. 18).
Оптическая схема прибора представляет собой
полихроматор на дифракционной решетке
с регистрацией разложенного излучения фотодиодной
линейкой. Рабочий спектральный
диапазон прибора (380–760) нм. Диапазон
линейности сигналов достигает шести порядков.
В зависимости от конфигурации входного
устройства прибор работает как в режиме
яркомера, так и в режиме измерения освещенности.
Спектральное разрешение прибора
не превышает 3 нм.

Рис. 18. Внешний вид
спектроколориметра «ТКА-ВД»

Устройство люксметра

Принцип работы люксметра заключается в преобразовании светового потока в электрическую энергию. Они находятся между собой в прямо пропорциональной зависимости. После попадания света прибор фиксирует фототок, измеряет его и выводит величину на табло. Если рассматривать более подробно, то прибор работает следующим образом:

  1. Световой поток попадает на фотоэлемент и высвобождает электроны.
  2. Световой поток преобразуется в электрическую энергию.
  3. Устройство фиксирует ток, после чего показывает результаты на шкале или дисплее.

Для выполнения этого процесса внутри устройства предусмотрены:

  • Фотоэлемент (фотоприемник), чаще всего селеновый. Это полупроводник, принимающий на себя свет и преобразующий его в ток. Прием светового потока и передача энергии электронам – это и есть то, для чего предназначен фотодатчик люксметра.
  • Аналоговый или цифровой индикатор. Аналоговый представляет систему из шкалы и стрелки, которая двигается при фиксации электрического тока. Цифровые люксметры оснащены ЖК-дисплеем, на котором результат регистрации фототока отражается в цифрах.

Виды люксметров и их цена

Люксметры могут применятся по назначению как снаружи, так и внутри помещений.

Конструктивно они делятся на:

• Моноблоки – датчик закреплен непосредственно на его корпусе. Такой вариант удобен при проведении быстрых измерений, имеет меньший вес, однако, для работы в малодоступных местах непригоден. Некоторые модели имеют съемный датчик, что расширяет их функционал.

• С выносным датчиком – более удобный вариант для замеров в тех местах, куда трудно подобраться. Чувствительный датчик подключается к основному модулю гибким проводом, что позволяет без труда замерять показатели с любых направлений. Подобные люксметры предпочтительны при оценке условий труда.

В зависимости от типа индикатора приборы бывают:

• Цифровые. Результаты измерений выводятся в электронном виде на дисплей прибора. Такие люксметры удобны в эксплуатации, имеют относительно высокую точность.

• Стрелочные – аналоговый индикатор имеет стрелку и шкалу, градация которой выполнена в люксах. Точность показателей замеров, по сравнению с предыдущим вариантом, значительно ниже.

Люксметр может иметь расширенную функциональность, по своим характеристикам прибор бывает:

• Бытовой. Дешевые модели отображают исключительно освещенность, их используют для быстрых замеров, не требующих высокой точности. Более дорогостоящие варианты способны самостоятельно высчитывать среднее значение освещенности на основе нескольких замеров. В конструкции предусматривается внутренняя память, интерфейс для подключения прибора к персональному компьютеру или ноутбуку. Минимальная цена за прибор – 1500 руб.

• Профессиональный – комплектуется светофильтрами, спектральная чувствительность фотодатчика, которых практически аналогична человеческому глазу. Они позволяют эффективнее проводить замеры свойств световых потоков разнообразных цветовых оттенков. Уличные модели в дополнение оснащаются специальными поглощающими фильтрами, расширяющими измерительный интервал при ярком освещении. Погрешность измерений составляет около 1%. Стоимость профессиональных моделей начинается с отметки 10 тыс. рублей.

Зачастую профессиональные люксметры оснащаются дополнительным оборудованием, позволяющим измерять другие характеристики светового потока:

• Люксметр-яркомер. Кроме выполнения функций непосредственно люксметра, предназначен для измерения яркости светящихся объектов. Качественный прибор обойдется в 10 и более тыс. рублей.

• Люксметр-пульсметр. Этот прибор, кроме измерения освещенности, способен определять коэффициент пульсации (мерцания) компьютерных мониторов, экранов планшетов, телефонов, других устройств. Люксметры с измерением пульсаций помогут выбрать, например, лампу с наиболее безопасными для человеческого глаза показателями мерцания. Минимальная стоимость – 4,5 тыс. рублей.

• Универсальные измерительные приборы, выполняющие одновременно функции люксметра, яркомера и пульсметра. Стоимость хороших моделей с поверкой начинается от 15 тыс. рублей.

Цена люксметров сильно зависит от рабочих диапазонов.

По этой причине более качественные целевые приборы с узким измерительным диапазоном обойдутся дороже китайских аналогов “на все случаи жизни”.

В качестве альтернативы люксметру могут послужить специальные приложения, устанавливаемые на iOS или андроид.

Однако множество проводимых тестов дают одинаковые результаты: люксметр в смартфоне не способен заменить полноценный прибор, так как имеет большую погрешность, величина которой зависит от модели телефона.

Пояснения


Спектральные зависимости относительной чувствительности среднего человеческого глаза для дневного (красная линия) и ночного (синяя линия) зрения

Значение фотометрического эквивалента излучения Km однозначно задаётся определением единицы силы света канделы, являющейся одной из семи основных единиц системы СИ. По определению одна кандела — это «сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683  Вт/ср». Частоте 540·1012 Гц соответствует в воздухе длина волны 555 нм, на которой располагается максимум спектральной чувствительности человеческого глаза для дневного зрения. Поэтому коэффициент Km находится из равенства

1 кд = Km·Vλ(555)·1/683 Вт/ср, откуда следует Km = 683 (кд·ср)/Вт = 683 лм/Вт.

Для случая ночного зрения значение фотометрического эквивалента излучения изменяется.

Человеческий глаз считается светлоадаптированным при яркостях более 100 кд/м². Ночное зрение наступает при яркостях менее 10−3 кд/м². В промежутке между этими величинами человеческий глаз функционирует в режиме сумеречного зрения.

Отличие освещенности от светового потока

При этом многие путают единицы измерения Люмены с Люксами. Запомните, в люксах измеряется именно освещенность.

Как наглядно объяснить их разницу? Представьте себе давление и силу. С помощью всего лишь маленькой иголки и небольшой силы, можно создать высокое удельное давление в отдельно взятой точке.

Также и с помощью слабого светового потока, можно создать высокую освещенность в отдельно взятом участке поверхности.

1 Люкс – это когда 1 Люмен попадает на 1м2 освещаемой площади.

На поверхности этого стола должна быть определенная норма освещенности, чтобы вы могли комфортно работать. Первоисточником для норм освещенности служат требования сводов правил СП 52.13330

Для обычного рабочего места это 350 Люкс. Для места, где производятся точные мелкие работы – 500 Лк.

Данная освещенность будет зависеть от множества параметров. К примеру, от расстояния до источника света.

От посторонних предметов рядом. Если стол находится около белой стены, то и люксов соответственно будет больше, чем от темной. Отражение обязательно скажется на общем итоге.

Любую освещенность можно замерить. Если у вас нет специальных люксометров, воспользуйтесь программами в современных смартфонах.

Правда заранее приготовьтесь к погрешностям. Но для того, чтобы сделать навскидку первоначальный анализ, телефон вполне сгодится.

Назначение и принцип действия люксметра

Главное назначение прибора – произведение замеров уровня освещенности в требуемой точке пространства.

Там, где используется люксметр, можно без труда производить корректировку этого показателя, который зависит от:

  • количества источников света, включая искусственные и естественные;
  • светового давления каждого из источников;
  • расстояния между точкой измерения и источником света;
  • отражающей способности находящихся поблизости поверхностей.

Прибор активно применяться в следующих случаях:

  • Для контроля санитарных норм освещения жилых помещений.
  • Для измерения уровня освещения рабочих мест, что позволяет поддерживать комфортные условия труда и гигиены работников.
  • Для контроля освещенности помещений на производственных участках, в школах, библиотеках, медицинских заведениях, музеях и др.
  • Для подбора яркости ламп в оранжереях, тепличных хозяйствах, где выполняется разведение и содержание растений.
  • Для определения съемочной экспозиции при фотографировании.
  • Для настройки яркости сигнальных огней, световой рекламы.
  • В составе пульсметр-яркомеров – для измерения степени пульсации изображения мониторов и освещенности в целом, вызванной мерцанием светодиодов, люминесцентных и энергосберегающих ламп.
  • Для проверки соответствия фактической освещенности расчетному уровню при монтаже осветительных систем.

При работе прибора световой поток определенного спектра преобразовывается в электрический ток с соответствующими интенсивности первого характеристиками.

Результаты выводятся на экран устройства.

С учетом того, как работает люксметр, имеет смысл использовать модели, позволяющие выбирать рабочий режим под конкретный световой спектр.

Принцип работы устройства:

• Электроны фотоэлемента, изготовленного из полупроводника, активизируются под действием света. Чем ярче световой поток, тем активнее высвобождаются электроны.

• Пропускная способность фотоэлемента изменяется, что регистрирует электроника прибора, которая, после обработки процессором, отображается на экране.

• Измеритель освещенности в работе выдает результаты, корректность которых зависит от правильности ориентирования датчика относительно светового потока.

Понятие освещенности и светового потока

Освещенность рассчитывается как соотношение светового потока к площади поверхности, на которую он направлен, и измеряется в люксах. Один люкс равен одному люмену на квадратный метр (если до поверхности дошел весь световой луч).

Однако при расчетах необходимо учитывать некоторые нюансы:

  • уровень освещенности снижается обратно пропорционально квадрату расстояния от лампочки до освещаемого предмета;
  • освещенность уменьшается, если световой поток падает под углом более 90 градусов;
  • освещенность прямо пропорциональна силе света (мощности источника).

В помещении с чистым воздухом для расчета освещенности используется формула: Е = I / S2, где:

  • I – сила светового луча,
  • S – расстояние от лампы до предмета.

Световой поток характеризует общее количество света, выделяемого прибором. Но и тут есть нюансы. Если световой луч рассеивается под разным углом, значение меняется. Лампа накаливания со световым потоком 1000 лм распределяет его почти на 360 градусов, освещая не только пол, но и стены, потолок. На пол попадает всего 600-700 лм. Если сравнивать с Led лампочкой со световым лучом 1000 лм и углом излучения 180 градусов, на пол попадет почти 1000 лм. Это значит, что при одинаковом световом потоке светодиодная лампочка эффективнее, если нужно осветить пол.

Это неверный подход. Световой поток действительно зависит от мощности, но не у светодиодных ламп. Диоды с одинаковой мощностью, изготовленные разными производителями, по световому потоку отличаются.

Примеры можно посмотреть в таблице:

БрендМощность (Вт)Заявленный световой поток (лм)Действительный световой поток (лм)
GE4215230
Panasonic4215210
Philips4215347
Philips6430364
Panasonic6430491
V-light7430369
Airam8430617
GE8430488
Verbatim9430443
V-light10730679
Megaman10730680
Verbatim10730906
Megaman11960858

При покупке светодиодных ламп следует ориентироваться на производителя, световой поток (люмены) и угол излучения. У ведущих производителей эти данные видны на упаковках. Если информации нет, изделие не стоит покупать.

Перечень основных единиц измерения

На отечественном рынке представлена продукция производителей из разных стран, что объясняет определенную путаницу в терминах. Ниже приведены популярные единицы измерения освещенности совместно с формулами пересчета значений. Эти сведения пригодятся для корректного сравнительного анализа технических характеристик различных светильников.

Что такое «кандела»

Это классическая единица измерения освещенности. Канделой называют силу света в одну «свечу» (candela лат.), который излучает источник монохроматического излучения с рабочей частотой 540*1012 Герц. Энергетический потенциал такого потока составляет 1/680 Ватт на стерадиан (ст).

К сведению. Стерадианом называют телесный угол, который вырезает конусный луч на поверхности при размещении точечного источника в центре сферы. Угол раскрытия составляет приблизительно 65,5°.

Следует отметить! Приведенная частота соответствует зеленому цвету. Этот диапазон человеческий глаз способен фиксировать даже при минимальной интенсивности излучения. При работе с иными частями спектра делают необходимые коррекции.

Люмены и люксы

В люменах измеряют световой поток. Один лм создает точечный источник, который генерирует силу света в 1 канделу. Луч формирует раскрытие на 1 стерадиан. Объединяющая формула:

1лм = 1 кд * 1 ср.

Люкс, в свою очередь, равен яркости, которую создает на одном кв. метре ровной поверхности световой поток 1 люмен.

Люксы и люмены

Этот рисунок наглядно демонстрирует, что измеряется в лк и лм. Рядом показано изменение освещенности и размеров рабочей площади при разных положениях источника. Увеличение расстояния расширяет зону с одновременным уменьшением яркости светового пятна, которую определяют в люксах. Люмены нужны для оценки параметров светильника.

В реальных условиях проверяют пути прохождения лучей. Так, в пустом выставочном зале препятствия отсутствуют. Однако условия существенно изменяются после установки торговых стеллажей. Чтобы обеспечить видимость продукции на полках, приходится увеличивать мощность светильников либо выбирать оптимальные места крепления.

Освещение в супермаркете

Чтобы упростить расчеты, современные пользователи применяют специализированное программное обеспечение. С его помощью моделируют различные варианты размещения осветительных приборов с учетом расположения мебели, размеров оконных проемов, других важных факторов.

Люмен и ватт

Ранее рядовые потребители не задумывались о том, в каких единицах измеряется освещенность

При посещении магазинов обращали внимание только на Ватты. Однако в наши дни стандартная маркировка содержит необходимые для объективной оценки данные

Дело в том, что потребляемая мощность расходуется с разной эффективностью. Значительная часть излучения классических ламп накаливания расположена в невидимом инфракрасном диапазоне спектра. Дополнительным недостатком является паразитный нагрев, который увеличивает затраты на поддержание комфортных условий в летний период. Высокотемпературное воздействие быстро разрушает прочнейшие вольфрамовые нити.

Менее критичные рабочие режимы созданы изобретателями газоразрядных ламп. Эта особенность объясняет продление срока службы. Основные недостатки:

  • хрупкая конструкция;
  • раздражающие и утомляющие пульсации;
  • необходимость особой утилизации ядовитых люминофоров.

Самые лучшие показатели обеспечивают современные светодиодные приборы. Они отличаются:

  • высокой яркостью при минимальном потреблении энергии;
  • гармоничным распределением спектра;
  • долговечностью, устойчивостью к механическим и другим внешним воздействиям.

Сравнение ламп разных типов

При одинаковой освещенности светодиодный прибор потребляет в 10-12 раз меньше электроэнергии, по сравнению с лампами накаливания. С учетом реального срока службы и сниженных эксплуатационных расходов инвестиции в новые изделия будут экономически целесообразными.

Кратные единицы люмена

Для удобства, кроме целых, применяют кратные значения измеряемых величин по стандарту СИ. К базовому наименованию добавляют приставки, которые обозначают соответствующую степень:

  • кило – 103;
  • мега – 106;
  • гига – 109.

Основные выводы

Выбирая источник света, необходимо знать преимущества и недостатки

В магазине важно быстро определить, в чем измеряется каждый параметр, чтобы понять, о чем может рассказать надпись на упаковке

Выбирать светодиодные лампы достаточно сложно. Если производитель указал, что пульсации нет, на практике она будет, но не более 5%. Не стоит покупать изделие, выпущенное более, чем 2 года назад (за это время технологии успели измениться). Срок гарантии должен быть 3-5 лет. Если он меньше, повышается вероятность сокращения срока эксплуатации.

Даже без расчетов понятно, что с точки зрения затрат на электроэнергию выгоднее светодиодные источники. Но это верно лишь в том случае, если лампы качественные.

Если при выборе допущена ошибка, изделие при наличии чека можно поменять во время гарантийного срока. Чтобы чек не затерялся, желательно его сфотографировать еще в магазине.

Предыдущая
СветодиодыКак подключить светодиодный светильник к 220 В: схема и правила
Следующая
СветодиодыУстройство и принцип работы диода при прямом и обратном включении

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации