Андрей Смирнов
Время чтения: ~22 мин.
Просмотров: 0

Сила тока в сети: как узнать, сколько ампер в квартире, и какой ток в розетке

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

https://youtube.com/watch?v=bCsdW3jHxVs

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Емкость конденсатора рассчитывается по эмпирической формуле:

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Пару слов о физике процесса и законе Ома

Так вот, закон Ома. Закон Ома — сиди дома. Основополагающий закон, зная который, можно уже что-то сообразить. ПрименИм для цепей постоянного и переменного тока. Разница лишь в сопротивлении: для переменного тока это будет полное сопротивление Z, в которое входит активная, индуктивная и емкостная составляющие. Для постоянного тока сопротивление только активное. Сама формула следующая: I=U/R для постоянки, и I=U/Z для переменки. Хотя переменки это в школе, а у нас переменный ток. Более подробно про закон Ома в другом материале. У нас все же тема про розетки.

Значит розетка — это источник переменного напряжения в домашней сети, к которому мы подключаем нагрузку (чайник, стиралка, утюг, фен или удлинитель, к которому подключено несколько приборов разом). Ток появляется, когда есть напряжение и есть нагрузка. Если выключить в квартире освещение и все приборы, то счетчик не будет вращаться, так как отсутствует ток и мощность равна нулю. Если мы включаем бытовой прибор, то “деньги начинают кАпать”. Напряжение же в розетке есть всегда, если оно приходит от щитка и включен питающий автомат.

Эволюция напряжения в сети – с чего все началось

Уровень стандартных напряжений за последние 100 лет постоянно изменялся, для отечественных бытовых сетей в зависимости от степени технологического развития. Так, на заре электрификации стран советского лагеря для потребителей электрической энергии устанавливался номинал на 127 В. Такая система номинальных параметров вошла в обиход благодаря разработкам Доливо-Добровольского, который и предложил трехфазную генерацию вместо устаревшей двухфазной. Следует отметить, что еще в конце 30-х годов прошлого века  норма напряжения 127 В  уже слабо соответствовала возросшим производственным нуждам, именно тогда возникли первые попытки заменить ее, но с началом Второй мировой войны эти планы так и не реализовались.

Но уже в 60-х годах начались масштабные работы по приведению номинального напряжения к новому стандарту 220/380 В вместо переменного трехфазного 127/220 В. Европейские сети, к тому моменту уже совершили массовый переход на новые номиналы, дабы избежать  необоснованно затратной замены проводов на большее сечение. В попытке не уступать в эффективности советские страны также начали переход, который планировалось закончить за ближайшую пятилетку. Происходило строительство новых электростанций, замена трансформаторов и силовых агрегатов, но процесс перехода на нормы в 220 В фазного напряжения для бытовых потребителей затянулся до 80-х годов.

Рис. 1. Номинал на розетке

В 1992 году ГОСТ 29322-92 (МЭК 38-83) ввел новые нормы напряжения: 230 В фазного вместо 220 В и 400 В линейного вместо привычных 380 В.

Такой шаг преследовал стремление вывести собственную энергетическую систему в один ряд с зарубежными для:

  1. удобства работы с ближайшими соседями;
  2. возможности беспрепятственного выхода на мировые рынки;
  3. упрощения процедуры транзита.

Но, из-за несовершенства всей отечественной системы электроснабжения и отсутствия средств для полномасштабной реконструкции, эти нормы напряжения не установились и по сей день.

Сколько нужно для электроприборов

Оборудование, выпускаемое в России для внутренних потребителей, работает и при 220 В, и при 230 В, потому что производители закладывают необходимый запас от -15 % до +10 %. от номинала. Но в каждом конкретном случае допустимый диапазон характеристик питающей сети для прибора указывается в паспорте изделия или на его этикетке. Например, компьютеры могут работать при 140 — 240 В, а зарядное устройство телефона при 110 — 250 В. Данные маркировки часто наносятся на само изделие.

Наиболее чувствительны к качеству электроэнергии устройства, имеющие электродвигатели. Здесь пониженное напряжение может привести к сложностям в запуске и к сокращению срока службы оборудования, а повышенное приведёт к перегрузкам, также сокращающим период эксплуатации. Если взять обычную лампу накаливания и понизить напряжение питания на 10%, то интенсивность свечения заметно уменьшится, а если его увеличить — её срок службы сократится в 4 раза.

Допустимая максимальная норма в сети — 253 В. Эта величина может оказаться слишком высокой для электрооборудования, рассчитанного на 220 вольт. Разница в напряжении приведет к перегреву блоков питания, сетевых адаптеров, к преждевременному выходу приборов из строя.

Если вы заметили, что ваша техника стала перегреваться, выходить из строя, проверьте напряжение в сети. При обнаружении отклонения более чем на 10%, срочно обратитесь в вашу сетевую компанию. Там обязаны принять меры по ликвидации факторов, вызвавших нарушения.

Теперь вы знаете, какая все же норма напряжения в сети РФ по ГОСТ. Если возникли вопросы, задавайте комментарии под статьей. Надеемся, информация была для Вас полезной и интересной!

Материалы по теме:

  • Что делать, если низкое напряжение в сети
  • Как пользоваться мультиметром
  • Что делать, если из-за скачка напряжения сгорела техника

25.02.2020

Как рассчитать ток защитного автомата

Для группы розеток, предназначенных для питания бытовых электроприборов на кухне, необходимо подобрать защитный автоматический выключатель. Мощности приборов по паспортным данным составляют 2,0, 1,5 и 0,6 кВт.

Решение. В квартире используется однофазная переменная сеть 220 вольт. Общая мощность всех приборов, подключенных в работу одновременно, составит 2,0+1,5+0,6=4,1 кВт=4100 Вт.

По формуле I = P / U определим общий ток группы потребителей: 4100/220=18,64 А.

Ближайший по номиналу автоматический выключатель имеет величину срабатывания 20 ампер. Его и выбираем. Автомат меньшего значения на 16 А будет постоянно отключаться от перегрузки.

Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В

Сечение жилы провода, мм2Диаметр жилы проводника, ммМедные жилыАлюминиевые жилы
Ток, АМощность, ВтТок, АМощность, кВт
0,500,8061300
0,750,98102200
1,001,13143100
1,501,38153300102200
2,001,60194200143100
2,501,78214600163500
4,002,26275900214600
6,002,76347500265700
10,003,575011000388400
16,004,5180176005512100
25,005,64100220006514300

Как видно из таблицы сечение жил зависит кроме нагрузки и от материала, из которого изготовлен провод.

Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.

Эта схема похожа не предидущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.

Хотя вместо обычного диода можно поставить еще один светодиод.

Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды обезопасены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).

Как узнать какая мощность в амперах

Мощность на каждой розеточной модели прописывается рядом с показателем заряда электротока. Как правило, все данные даны в киловаттах, но, при желании, можно перевести значение в ватт. Стандартные модели для частного дома или квартиры имеют 1,3-3,5 квт. Более усовершенствованные приборы для заряда котла или бойлера имеют мощностный заряд в 7 киловатт электроэнергии.

Обратите внимание! По-другому узнать показатель можно через приведенную ниже формулу. Также это можно сделать, используя такой прибор как амперметр

Эти же самые действия легко выполняются с использованием мультиметра и ваттметра. В зависимости от разновидности измерительного оборудования электричества, показатели будут представлены в виде амперов, вт или киловаттах.

Мощность в амперах

В целом, отвечая на вопрос, сколько ампер в розетке 220в, можно указать, что там находится в среднем 9,1-10 ампер при нормах мощности 2,2-2,4 киловатта. Розетка, кроме того, имеет и другие важные характеристики, которые влияют на силу тока и освещенность. Чтобы узнать, какая мощностная энергия находится в источнике, можно ознакомиться с технической инструкцией к ней, посчитать известные данные, подставив формулу, или попытаться сделать измерения амперметром или другим измерительным прибором.

Вариант №4 » лучшая схема с токоограничительным кондесатором, резистором и выпрямительным мостом.

Данный вариант схемы подключения индикаторного светодиода к сети 220 вольт считаю наиболее лучшим. Единственным недостатком (если можно так сказать) этой схемы является то, что в ней больше всего деталей. К достоинствам же можно отнести то, что в ней нет элементов, которые чрезмерно нагревались, поскольку стоит диодный мост, то светодиод работает с двумя полупериодами переменного напряжения, следовательно нет заметных для глаза мерцаний. Потребляет эта схема меньше всего электроэнергии (экономная).

Работает данная схема следующим образом. Вместо токоограничительного резистора (который был в предыдущих схемах на 24 кОм) стоит конденсатор, что исключает нагрев данного элемента. Этот конденсатор обязательно должен быть пленочного типа (не электролит) и рассчитан на напряжение не менее 250 вольт (лучше ставить на 400 вольт). Именно подбором его емкости можно регулировать величину силы тока в схеме. В таблице на рисунке приведены емкости конденсатора и соответствующие им токи. Параллельно конденсатору стоит резистор, задача которого сводится всего лишь к разряду конденсатора после отключения схемы от сети 220 вольт. Активной роли в самой схеме запитки индикаторного светодиода от 220 В он не принимает.

Далее стоит обычный выпрямительный диодный мост, который из переменного тока делает постоянный. Подойдут любые диоды (готовый диодный мост), у которых максимальная сила тока будет больше тока, потребляемого самим индикаторным светодиодом. Ну и обратное напряжение этих диодов должно быть не менее 400 вольт. Можно поставить наиболее популярные диоды серии 1N4007. Они дешево стоят, малы по размерам, рассчитаны на ток до 1 ампера и обратное напряжение 1000 вольт.

В схеме есть еще один резистор, токоограничительный, но он нужен для ограничения тока, который возникает от случайных всплесков напряжения, идущие от самой сети 220 вольт. Допусти если кто-то по соседству использует мощные устройства, содержащие катушки (индуктивный элемент, способствующий кратковременным всплескам напряжения), то в сети образуется кратковременное увеличение сетевого напряжения. Конденсатор данный всплеск напряжения пропускает беспрепятственно. А поскольку величина тока этого всплеска достаточна для того, чтобы вывести из строя индикаторный светодиод в схеме предусмотрен токоограничительный резистор, защищающий схему от подобный перепадов напряжения в электрической сети. Этот резистор нагревается незначительно, в сравнении с резисторами в предыдущих схемах. Ну и сам индикаторный светодиод. Его вы выбираете уже сами, его яркость, цвет, размеры. После выбора светодиода подбирайте соответствующий конденсатор нужной емкости руководствуясь таблицей на рисунке.

P.S. Альтернативным вариантом электрической светодиодной подсветки может быть классическая схема подключения неоновой лампочки (параллельно которой ставится резистор где-то на 500кОм-2мОм). Если сравнивать по яркости, то все таки она больше у светодиодной подсветки, ну а если особая яркость не требуется, то вполне можно обойтись данным вариантом схемы на неоновой лампе.

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга – возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питанияНапряжение
NiCd аккумулятор1,2 В
Литий-железо-фосфатный аккумулятор3,3 В
Батарея типа «Крона»9 В
Автомобильный аккумулятор12 В
Аккумулятор для грузовых автомобилей24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

R = R1*R2 / (R1+R2)

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Нормы мощности в розетке 220в

Мощность является общей величиной, показателем перемножения напряжения с силой тока в бытовой сети 220 вольт. Обычная розетка при нормальном положении пропускает 10 ампер. Стоит указать, что на каждом объекте находится своя маркировка. Как правило, бытовая модель однофазной цепи пропускает в себя 6А, что равно 1,3 киловатту. Средняя модель рассчитана на 10А, а это 2,2 киловатта. Более мощная модель, используемая для бытовой электрической сети в квартире, дома и гараже, на 16А имеет показатель в 3,5 киловатт.

Амперы в розетках на 220 вольт

Усовершенствованная конструкция, которая подходит только для выделенной квартирной электролинии с электроплитой и бойлером, на 32 ампер пропускает 7 киловатт энергии. Отличается последняя наличием усовершенствованного штепсельного контакта, который исключает подключение простых вилок для бытовых электрических приборов.

Таблица нормы мощности

Вводная про подключение амперметра, вольтметра и измерения мультиметром

Следующим пунктом разберемся с нашими измерительными приборами, которыми мы измеряем ток или напряжение.

Для измерения тока используется амперметр. Амперметр включается последовательно с нагрузкой. И это не пустые слова. Сопротивление амперметра ничтожно мало — это необходимо, чтобы не вносить погрешности в измерения тока, потребляемого нашими приборами. Чтобы использовать амперметр для измерения большего тока, можно произвести его шунтирование.

Для измерения напряжения в цепи уже используется вольтметр. Вольтметр подключается параллельно цепи и имеет большое внутреннее сопротивление. Это сопротивление необходимо для того, чтобы уменьшить ток, протекающий через прибор. Ведь по закону Ома мы уже понимаем, что при постоянстве величины напряжения, чем больше сопротивление, тем меньше ток.

Мультиметр — это прибор, которым можно производить различные измерения электрических и не только величин. Так вот, мультиметром можно замерять и ток и напряжение

Важно при этом вставить измерительные концы в нужные гнезда и выставить нужный предел. А далее уже пользоваться им как вольтметром или амперметром

Еще важным пунктом является предел измеряемых величин на приборах. То есть до измерения, желательно знать порядок величины, которая будет замерена.

Как измерить напряжение в розетке

Что мы будем делать дальше? Берем вольтметр или мультиметр, собранный для измерения переменного или постоянного напряжения. Одним концом тыкаем в одну дырку розетки, а вторым в другую дырку розетки. Что у нас получится?

  • прибор сгорит, если у вас выставлен предел меньше 220 вольт, или шкала прибора рассчитана вольт на 50. Это произойдет из-за того, что внутреннее сопротивление прибора окажется мало, и большАя величина тока вызовет порчу прибора (это может быть перегрев, оплавление, перегорание предохранителя и прочие неприятности)
  • прибор покажет примерно 220 В, и тем самым вы произведете нормальное такое измерение электрической величины

Какой величины ток в розетке и как его измерить

Теперь то, что делать нельзя!!! А то вдруг, вы сразу читаете и делаете. Потом претензии. Поэтому чисто теоретически. Берем мультиметр, подготовленный для измерения силы тока, или амперметр и один конец тыкаем в одну дырку розетки, второй во вторую. Что у нас произойдет?

  • Прибор сгорит. Так как его сопротивление мало, нагрузки нет, и ток будет настолько велик, что и прибор спалится и Вам может достаться, вплоть до больничной койки. Не стоит так делать, ей богу. По братски прошу, не стОит.
  • Прибор не сгорит, но только при условии, что у вас обесточена сеть. поэтому скорее достаем концы из розетки, чтобы сохранить материальную ценность от порчи.

Далее берем нагрузку. Нагрузка это любая штука, которая имеет сопротивление (активное, индуктивное, емкостное). Или же это прибор, который имеет свою электрическую схему (которая и есть сопротивление) и для работы ему необходимо подать питание на выходы ноль и фаза или плюс и минус. Схем огромное количество, как и приборов, где они применяются.

Суть вот в чем, у нас есть провод фазы и провод земли. Амперметр нам надо подключить в разрыв провода фазы. То есть либо перекусить его, либо через клеммник. Делать подключение надо при отсутствии напряжения, а то “лясне”. Сначала собираем измерительную схему — потом подаем на неё напряжение. Фаза пойдет через амперметр и прибор. Что получится:

Нагрузка у нас складывается последовательно. Сопротивление амперметра ничтожно мало, и ток, протекающий через прибор, пропорционален суммарному сопротивлению приборов. Стрелка на амперметре отклониться до величины потребляемого тока, или же на экране загориться значение, если измерительный прибор цифровой.
Прибор сгорит, если он предназначен для измерения постоянного тока, а мы включаем в цепь переменного тока, где нагрузка имеет активную и реактивную составляющие. Реактивная допустим большАя, активная — малипусенькая. Прибор постоянного тока видит только активную составляющую. Сопротивление суммарное будет ничтожным, а значит ток будет гигантским и прибор сгорит, да и измерителю может достаться
Прибор сгорит, если у нас выставлен предел на значение допустим 5А, а мы замеряем 20 ампер

Поэтому важно следить за величинами тока, которые мы измеряем.

Самый простой способ измерения силы тока — подключаем нагрузку в цепь, берем токоизмерительные клещи. Цепляем на провод по которому течет ток и замеряем его величину. Саааамый простой способ.

В общем измерение тока и напряжения это занятие, которое требует практической и теоретической подготовки от человека. Всегда лучше перестраховаться и вызвать специалиста, который разбирается в данных вопросах. Или хотя бы проконсультироваться.

Сколько ампер в розетке 220В

Домашние розетки делаются на разную силу тока, которую она способна пропустить. Наибольшее значение – 16 А для напряжения в 220 Вольт. Каждая электророзетка промаркирована – если отмечено значение 6 А, то суммарная подключаемая нагрузка не более этого числа.

Нагрузка которую может выдержать соединение определяется по сумме  подключенных электроприборов. Например микроволновая печь, стиральная машина  подключаются через отдельные розетки не менее чем на 16 А, а для осветительных приборов, телефонов требуются устройства с меньшим номиналом.

Электроплита подключается через отдельное УЗО, так как для нее требуется 25 А и более.

Живя в ХХІ веке, используя блага научных открытий, человеку обязательно знать тип и величину тока, протекающего в домашней сети. Без этой информации невозможно купить электророзетку, правильно рассчитать нагрузку для электроприборов. Стандарты различаются для разных стран, и это стоит учитывать при поездке в другое государство.

Разногласия в ГОСТах

Как же так, есть нормы, в стандарте приведены новые требования, а практическая реализация не наступила и почти что через тридцать лет. Причиной этому послужило постоянное наращивание мощности бытовыми приборами, их количеством и растущее потребление. Поэтому энергоснабжающие организации не могли достигнуть даже допустимых отклонений предыдущего стандартного номинального напряжения.

Первый из рассматриваемых нормативов – это ГОСТ 3244-2013, предназначенный для определения основных параметров качества электрической энергии. Как один из этих показателей, в стандарте установлены допустимые диапазоны для разности потенциалов.

Разумеется, рассматривать все пункты и их расчетную часть смысла не имеет, поэтому оговорим наиболее важные моменты:

  • согласно п.4.2.2 номинальное напряжение считается 220 В между фазой и нулем, и 380 В для линейной нормы.
  • провалы напряжения, которые, как правило, обуславливаются введением мощных потребителей, длительность провала не должна превышать 1 минуты;
  • в соответствии с п.4.3.3 импульсные перенапряжения, которые могут обуславливаться атмосферными разрядами, составляют норму от 1 микросекунды до нескольких миллисекунд;
  • несимметрия трехфазной сети согласно п.4.2.5 должна составлять не более 2 – 4% коэффициента несимметрии в десятиминутном интервале по недельной характеристике.

Для сравнения с предыдущими нормами, в действии находится ГОСТ 29322-2014, который относится к международным стандартам и устанавливает номинальные характеристики рядов напряжения. Был разработан в соответствии с другими нормами — IEC 60038:2009 и аннулировал действие стандарта 1992 года. Но в нем, согласно п.3.1 номинал сетей бытовой энергии устанавливается на отметку 230 В и 400 В для электрических сетей с переменным током частотой 50 Гц. Стоит сказать, что для зарубежных сетей с частотой 60 Гц имеются некоторые отличия, но допустимое отклонение частоты всего 2%, поэтому для отечественных потребителей эти поправки неактуальны.

Вариант №1 » последовательное включение светодиода и резистора.

Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 килоома (24000 ом).

Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.

Назначение элементов и принцип работы схемы

У многих читателей в доме установлены выключатели света со светодиодной подсветкой. Схема светодиодной подсветки выглядит следующим образом:

  1. Параллельно контакту выключателя включается цепочка, состоящая из гасящего резистора, светодиода и простого кремниевого диода.
  2. При разомкнутом выключателе электрический ток протекает через гасящий (токоограничивающий) резистор, включенные встречно-параллельно светодиоды и лампу накаливания.
  3. Во время одной из полуволн, когда положительное напряжение приложено к аноду LED, светоизлучающий диод светится. Тем самым не только обеспечивается подсветка выключателя, но и осуществляется светодиодная индикация напряжения.

Если убрать из схемы выключатель, лампочку и провода, у нас останется цепочка, состоящая из резистора и двух диодов. Эта цепочка представляет собой простейший индикатор (указатель) переменного тока 220 В.

Остановимся подробнее на назначении элементов схемы. Выше мы указывали, что рабочий ток сигнального LED составляет около 10-15 мА. Понятно, что при непосредственном подключении светоизлучающего диода к сети 220 В через него будет протекать ток, во много раз превышающий предельно допустимое значение. Для того чтобы ограничить ток LED, последовательно с ним включают гасящий резистор. Рассчитать номинал резистора можно по формуле:

R = (U max – U led) / I led

В ней:

  • U max – максимальное измеряемое напряжение;
  • U led – падение напряжения на светодиоде;
  • I led – рабочий ток светоизлучающего диода.

Выполнив простейший расчет, для сети 240 В мы получим номинал резистора R1 равный 15-18 кОм. Для сети 380 В нужно применить резистор, имеющий сопротивление 27 кОм.

Кремниевый диод выполняет функцию защиты от перенапряжения. Если он отсутствует, при отрицательной полуволне U на запертом светодиоде будет падать 220 В или 380 В. Большинство светоизлучающих диодов не рассчитано на такое обратное напряжение. Из-за этого может произойти пробой p-n перехода LED. При встречно-параллельном подключении кремниевого диода, во время отрицательной полуволны он будет открыт и U на светодиоде не превысит 0,7 В. LED будет надежно защищен от высокого обратного напряжения.

На основе рассмотренной схемы можно сделать индикатор напряжения 220/380 В. Достаточно дополнить радиоэлементы двумя щупами и поместить их в подходящий корпус. Для изготовления корпуса индикатора подойдет большой маркер или толстый фломастер. Можно разместить радиодетали на самодельной печатной плате или выполнить соединения навесным способом.

В маркере проделывают отверстие, в которое вставляют светодиод. На одном конце корпуса закрепляют металлический щуп. Через второй конец корпуса пропускают провод, идущий ко второму щупу или изолированному зажиму «крокодил».

Несмотря на простоту конструкции, устройство позволит проверять наличие напряжения на выходе автоматического выключателя или в розетке, найти сгоревший предохранитель в распределительном щите. Заметим, что приведенная схема индикатора применяется и в промышленных изделиях.

Как примерить два нормативных документа?

Несмотря на описанные выше несоответствия, оба стандарта допускают возможное отклонение характеристик от номинальной величины на 10% как в большую, так и в меньшую сторону. Однако заметьте, что норма в 220 В будет  допускать отклонение напряжения в пределах от 198 В до 242 В. В то же время, новый номинал в 230 В будет иметь разброс от 207 В до 253 В между возможным минимумом и максимумом в розетке.

Чтобы выровнять несоответствие между разными стандартами ГОСТ 29322-2014 предусматривает такие варианты напряжения для сетей 230 В в таблице А.1:

  • номинальное – 230 В:
  • наибольшее используемое для питания – 253 В;
  • наименьшее для питания – 207 В;
  • наименьшее используемое – 198 В.

Как видите, здесь нижний предел допустимой нормы напряжения расширен до 198 В, что необходимо, как один из этапов эволюции старой отечественной системы к современным стандартам. Таким образом, новые нормы не исключают 220 В, а включают их, как допустимое отклонение от международного стандарта, к которому отечественные электроснабжающие организации еще не перешли в силу тех или иных обстоятельств.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации