Андрей Смирнов
Время чтения: ~12 мин.
Просмотров: 1

Как определить тепловую мощность резистора

Расчет резистора для светодиода

Осуществить расчет резисторов по силам не только специалистам. Достаточно базовых знаний и понимания физики процесса. Чтобы определить необходимое сопротивление резисторов, нужно учитывать следующие важные факторы:

  • Маркировка на устройстве отображает так называемое напряжение падения, которое необходимо для расчета необходимого напряжения и для подбора резисторов.
  • Числовое значение напряжения определяется в виде разницы между напряжением агрегата и напряжением питания светодиода;
  • Чтобы рассчитать необходимое сопротивление, нужно разделить остаточное напряжение на величину тока, необходимую для бесперебойной работы системы.

Математический расчет сопротивления резистора

Согласно второму правилу Кирхгофа, можно составить равенство U = Ur + Uled, которое можно интерпретировать таким образом: U = I x R + I x Rled, где Rled – это дифференциальное сопротивление.

Значение Rled меняется вместе с изменением работы полупроводника. В данном случае соотношение переменных величин тока и напряжения определяет величину сопротивления.

Также есть смысл вывести формулу для вычисления сопротивления резистора: R = (U – Uled) / I, Ом. В данной формуле Uled – это паспортная величина для конкретного типа светодиода.

Как рассчитать резистор графическим способом?

При наличии ВАХ светодиода расчет резистора для светодиодов можно осуществить графическим методом, хотя такой способ и не очень распространен. Зная ток нагрузки, можно с помощью графика определить прямое напряжение. Необходимо с оси ординат (I) провести прямую до пересечения с кривой и опустить на ось абсцисс.

Особенности расчета

Каким бы ни было подключение резистора, всегда есть свои тонкости и нюансы. Постараемся разобраться, в чем особенности последовательного, параллельного и смешанного способов соединения.

Последовательное соединение

При последовательной схеме светодиоды расставляются друг за другом, и обычно достаточно одного резистора, если удастся корректно произвести расчет сопротивления. Это можно объяснить тем, что в электроцепи в каждом месте установки электроприбора имеется один и тот же ток, значение которого не изменяется.

Параллельное соединение

Часто бывает необходимость в подключении нескольких диодов к одному и тому же источнику. В теории можно использовать один токоограничивающий резистордля питания нескольких LED, соединенных параллельно.

Стоит отметить, что даже в «китайских» моделях производитель устанавливает отдельный ограничительный резистор. При общем балласте для нескольких LED значительно растет вероятность поломки диодов, излучающих свет.

Смешанное соединение

При выборе смешанного соединения схему следует рассчитывать отдельно для каждой последовательной цепи. Если количество и типы светодиодов одинаковы в каждой из последовательных цепей, расчет можно произвести единожды для любой группы диодов

Важно, чтобы все светодиоды были однотипными, как минимум, в пределах общей цепи

Примеры расчетов сопротивления и мощности резистора

Рассмотрим пример расчета сопротивления резистора LED SMD 5050, при работе с которой следует учитывать некоторые конструкционные особенности светодиода, который включает три независимых кристалла.

При условии, что LED SMD 5050 одноцветный, напряжение на кристалле будет отличаться максимум на 0.1 В. Таким образом, светодиод может быть запитан от одного резистора, а три анода можно объединить в одну группу, три катода – соответственно, в другую. Для подключения SMD 5050 с параметрами ULED=3,3 В и ILED=0,02 А.

R = (5 – 3.3) / (0.02 х 3) = 28.3 Ом. Ближайший стандартный показатель составляет 30 Ом. К установке принимаем резистор с сопротивлением 30 Ом и мощностью 0.25 Вт.

Для максимального удобства и скорости проведения расчетов можно использовать специальный онлайн калькулятор расчет резистора. Этот инструмент дает возможность произвести расчет резисторов в кратчайшие сроки с минимальными затратами времени и сил.

Полупроводниковые резисторы

Это полупроводниковые приборы с двумя выводами, обладающие зависимостью электрического сопротивления от параметров среды — температуры, освещенности, напряжения и др. Для изготовления таких деталей используют полупроводниковые материалы, легированные примесями, тип которых определяет зависимость проводимости от внешнего воздействия.

Существуют следующие типы полупроводниковых резистивных элементов:

  1. Линейный резистор. Изготовленный из слаболегированного материала, этот элемент имеет малую зависимость сопротивления от внешнего воздействия в широком диапазоне напряжений и токов, чаще всего он применяется в производстве интегральных микросхем.
  2. Варистор — элемент, сопротивление которого зависит от напряженности электрического поля. Такое свойство варистора определяет сферу его применения: для стабилизации и регулирования электрических параметров устройств, для защиты от перенапряжения, в других целях.
  3. Терморезистор. Эта разновидность нелинейных резистивных элементов обладает способностью изменять свое сопротивление в зависимости от температуры. Существует два типа терморезисторов: термистор, сопротивление которого падает с ростом температуры, и позистор, чье сопротивление растет вместе с температурой. Терморезисторы применяются там, где важен постоянный контроль над температурным процессом.
  4. Фоторезистор. Сопротивление этого прибора меняется под воздействием светового потока и не зависит от приложенного напряжения. При изготовлении используется свинец и кадмий, в ряде стран это послужило поводом для отказа от применения этих деталей по экологическим соображениям. Сегодня фоторезисторы уступают по востребованности фотодиодам и фототранзисторам, применяемым в аналогичных узлах.
  5. Тензорезистор. Этот элемент устроен так, что способен менять свое сопротивление в зависимости от внешнего механического воздействия (деформации). Используется в узлах, преобразующих механическое воздействие в электрические сигналы.

Такие полупроводниковые элементы, как линейные резисторы и варисторы, характеризуются слабой степенью зависимости от внешних факторов. Для тензорезисторов, терморезисторов и фоторезисторов зависимость характеристик от воздействия является сильной.

Полупроводниковые резисторы на схеме обозначаются интуитивно понятными символами.

Особенности подключения светодиода

Светодиод – это полупроводник, кристалл кремня, который способен проводить напряжение и ток лишь в одном направлении

У лед-лампы (как и у диода) 2 вывода – анод («+») и катод («-»), при подключении важно соблюдать полярность – ток должен проходить от анода к катоду.  На аноде должно быть положительное напряжение, на катоде – отрицательное

Основное отличие от других источников света – невозможность прямого подключения к источнику питания. Это обусловлено другой особенностью – потреблением всего объема мощности, которая передается. Поэтому требуется последовательное подключение к схеме токоограничивающего устройства (резистора), использующего излишки напряжения и электротока.

Светодиод подключается к источнику питания и резистору:

  • последовательно;
  • параллельно;
  • комбинированно.

Для подключения к бытовой электросети существуют специально разработанные схемы и формулы для расчетов.

Разработку схемы и расчеты затрудняет еще одно обстоятельство. Ни один производитель не может указать точные параметры для каждого диода, поэтому определяет средний показатель напряжения при оптимальном уровне электротока для выпущенной партии. Это значит, в процессе разработки схемы и при расчетах по формулам лучше всего при помощи мультиметра определить точные значения.

Существует целый ряд правил, которые обязательно соблюдаются при сборке схемы:

  • цепочка собирается из ламп одного производителя с одинаковыми параметрами;
  • если диодов много, для них требуется радиатор;
  • на входе напряжение не должно превышать 35 В;
  • для пайки необходимо использовать пинцет и качественный маломощный паяльник с максимальной температурой до 260ос;
  • ножки нельзя гнуть под большим углом (у основания они не должны менять положение);
  • требуется плата из оргстекла или другого диэлектрика (предварительно высверливаются отверстия, соответствующие диаметру ламп);
  • в цепочку желательно включать предохранители.

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным. Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления.

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

www.led-obzor.ru

www.www.casemods.ru

www.katod-anod.ru

www.radiostorage.net

www.ledno.ru

Предыдущая
РезисторыЧто такое делитель напряжения и как он используется на резисторах?
Следующая
РезисторыКак отличается параллельное и последовательное соединение резисторов?

Балластный резистор

Балластный резистор — резистор, включенный в электрическую цепь, поглощающий излишнее напряжение, а также выравнивающий напряжения или токи в отдельных ветвях цепи. Например, при последовательном включении нескольких электронных ламп с различными токами накала параллельно нитям накала, потребляющим меньший ток, включаются резисторы. Ток, протекающей по всей цепи накала, ответвляется в эти резисторы, что приводит к выравниванию токов и обеспечивает необходимое напряжение накала каждой лампы.

Структурная схема ПРВ.

Балластные резисторы образуют вместе с терморезисторами ЧЭ измерительную мостовую схему. При отсутствии расхода воздуха подстроечным балластным резистором 2 проводится балансировка мостовой схемы, определяющая температуру разогревания измерительного резистора Rw и уровень начального выходного сигнала преобразователя.

Балластный резистор, установленный параллельно выходу на схеме рис. 5.16, разряжает конденсатор за несколько секунд в условиях отсутствия нагрузки. Это полезно, так как если конденсатор источника питания остается заряженным после того, как источник выключен, то легко можно повредить какие-нибудь схемные элементы, ошибочно считая, что напряжения в схеме нет.

Балластный резистор RQ ограничивает ток в обмотках дросселей при их насыщении.

Балластный резистор Re ограничивает ток от источника при насыщении дросселей.

Балластный резистор Re ограничивает ток в обмотках дросселей при их насыщении.

Балластный резистор Кб ограничивает ток от источника при насыщении дросселей.

Схема выходного каскада строчной развертки.| Осциллограммы развертки.

Балластные резисторы Rll, R12, R19 на выходе УН задают начальный ток ( примерно 100 мкА) источника второго анода, улучшая его нагрузочную характеристику и увеличивая стабильность размера изображения при изменении яркости изображения. Одновременно эти резисторы обеспечивают быстрый спад высокого напряжения при выключении телевизора, что предотвращает паразитное свечение экрана кинескопа.

Балластный резистор RQ ограничивает ток от источника при насыщении дросселей.

Однако балластный резистор ограничивает ток при насыщении дросселя и нижний предел его ограничен допустимым током в ДН. Из-за больших потерь в балластном резисторе такой стабилизатор применяется редко и только на малые мощности в нагрузке.

Однако балластный резистор ограничивает ток при насыщении дросселя и нижний предел его ограничен допустимым током в ДН. Из-за больших потерь в балластном резисторе такой стабилизатор применяется редко и только на малые мощности в нагрузке.

Принципиальная схема силовой цепи ( а и возбуждения синхронного генератора без балластного резистора ( б при электрическом торможении для тепловоза 2ТЭ116М.

На балластном резисторе RB, включенном в цепь последовательно соединенных обмоток возбуждения тяговых электродвигателей, выделяется тепло, на образование которого затрачивается до 15 % мощности дизеля.

Результат расчёта

Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону. Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла. Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь. Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

Таблица зависимости рабочего напряжения светодиода от его цвета.

Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми. Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно.

Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло. Чем равномернее они горят, тем меньше разброс. Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от 10W до 100W снижение растёт с 12В до 36В. Этот параметр должен быть указан в технических характеристиках LED чипа и зависит от назначения цвета:

  • синий;
  • красный;
  • зелёный;
  • желтый;
  • трёхцветный RGB;
  • четырёхцветный RGBW;
  • двухцветный;
  • теплый и холодный белый.

Светодиоды.

Прежде чем подобрать резистор для светодиода на онлайн калькуляторе, следует убедится в параметрах диодов. Китайцы на Aliexpress продают множество led, выдавая их за фирменные. Наиболее популярны модели SMD3014, SMD 3528, SMD2835, SMD 5050, SMD5630, SMD5730. Например, чаще всего китайцы обманывают на SMD5630 и SMD5730. Цифры в маркировке обозначают лишь размер корпуса 5,6мм на 3,0мм.

В фирменных такой большой корпус используется для установки мощных кристаллов на 0,5W , поэтому у покупателей диодов СМД5630 напрямую ассоциируется с мощностью 0,5W. Хитрый китаец этим пользуется, и в корпус 5630 устанавливает дешевый и слабенький кристалл в среднем на 0,1W , при этом указывая потребление энергии 0,5W.

Наглядным примером будут автомобильные лампы и светодиодные кукурузы, в которых поставлено большое количество слабеньких и некачественных ЛЕД чипов. Обычный покупатель считает, чем больше светодиодов чем лучше светит и выше мощность. Автомобильные лампы на самых слабых лед 0,1W Чтобы сэкономить денежку, мои светодиодные коллеги ищут приличные ЛЕД на Aliexpress. Ищут хорошего продавца, который обещает определённые параметры, заказывают , ждут доставку месяц. После тестов оказывается, что китайский продавец обманул, продал барахло. Повезёт, если на седьмой раз придут приличные диоды, а не барахло. Обычно сделают 5 заказов, и не добившись результата и идут делать заказ в отечественный магазин, который может сделать обмен.

Применеие на практике

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

  1. Токоограничивающий резистор (current-limiting resistor)
  2. Стягивающий, подтягивающий резистор (pull-down / pull-up resistor)
  3. Делитель напряжения (voltage divider)

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего
резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор
снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins).
Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации,
ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю
понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом
со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт
(логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино.
Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения.
Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать
хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют
как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать
отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы
больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора
не даёт большей части тока идти в землю: сигнал пойдёт
к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло
бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь
разомкнута:

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери
энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.

Делитель напряжения

Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения
лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации