Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Как сделать стабилизатор тока для светодиодов?

Прочие моменты

Также, выбирая стабилизатор напряжения для люстры, стоит обратить внимание на такой показатель, как уровень шума. Зависит он от системы охлаждения прибора: при активном охлаждении используется вентилятор, что производит много шума

Также существуют системы пассивного охлаждения с применением изготовленного из специального материала радиатора — в таком случае уровень шума будет минимален.

Итак, если внимательно разобраться, к чему относятся те или иные характеристики устройства, можно выбрать наиболее подходящую модель стабилизатора напряжения для люстры и избежать при этом лишних затрат на функции, не влияющие на работу осветительного прибора. Также не следует забывать, что стабилизатор не может полностью исключить эффект моргания света, но может максимально сгладить его, а также защитить осветительные приборы и лампы, и продлить срок их службы.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Схемы стабилизаторов и регуляторов тока

Существуют как минимум
четыре варианта изготовления стабилизаторов напряжения на 12 вольт для авто
своими руками:

  1. На кренке.
  2. На паре транзисторов.
  3. На операционном усилителе.
  4. На микросхеме импульсного стабилизатора.

Разберем, какие главные
особенности имеет каждая из рассматриваемых модификаций.

На кренке

Для сборки своими
руками простейшего стабилизатора для светодиодов для авто на 12 вольт
потребуются:

  1. Микросхема LM317 или КРЕН8Б (более точнее КР142ЕН8Б), или KIA7812A.
  2. Резистор на 120 Ом.
  3. Печатное плато или перфорированная панель.

На изображениях
наглядно представлено расположение основных компонентов схемы простейшего
стабилизатора для светодиодов в авто:

На второй схеме на
входе с АКБ применяется диод выпрямляющего типа 1n4007.

На двух транзисторах

Одним из самых
популярных автомобильных стабилизаторов напряжения для светодиодов на 12 вольт,
который также собирается своими руками, на сегодня является схема на двух
транзисторах.

Переменное напряжение
номиналом 12 вольт поступает на диодный мостик VD1 – VD4, выпрямляется и,
проходя через фильтры С1 С2, сглаживается. Далее ток идет на стабилизатор
параметрического типа VD1 и проходит к резистору R2. Затем с его движка
передается на ключ составного транзистора VT1 VT2. Уровень его открытости
определяется состоянием движка резистора переменного типа R2 – в нижнем
положении регулятора транзисторы перекрыты и напряжение не поступает в
нагрузку, а в верхнем состоянии регулятора R2 оно максимально и транзисторы
полностью открыты, напряжение прилагается к нагрузке.

Приведенная модель
стабилизатора напряжения для авто чаще всего применяется для дневных ходовых
огней на базе светодиодов и позволяет успешно подстраивать параметры бортового
тока под характеристики прибора освещения.

На операционном усилителе

Стабилизатор напряжения
на 12 вольт для светодиодов в авто имеет смысл изготовить своими руками, когда
возникает необходимость для его работы в расширенном диапазоне рабочих
параметров. Ниже приведенная схема такого устройства. Главная его особенность в
том, что сам усилитель включен в цепь обратной связи и питается прямо с выхода
стабилизатора. Прибор характеризуется коэффициентом стабилизации – порядка
1000, при этом сопротивление на выходе – не более 10 мкОм при КПД около 50%.
Ток нагрузки в номинале – не менее 200 мкА, при пульсации напряжения на выходе
в двойной амплитуде – меньше 60 мкВ.

Среди главных
особенностей его работы выделяются:

  1. Рабочий интервал температуры – от -20 до +60 градусов.
  2. Термический дрейф напряжения на выходе – меньше 0,05%.
  3. Возможность повышения напряжения на выходе до 27-30 вольт.

Для решения последней задачи нужно между выводами «7» и «+25» установить резистор на 200 Ом. Каскад транзистора VT1 выполняет роль динамической нагрузки для VT4 и при этом повышает общий коэффициент усиления. Транзистор П702А можно заменить на аналоги П702 или КТ805, при этом КТ603Г – соответственно на П308 или П309, а также КТ201В и КТ203В — на МП103 либо МП106.

На микросхеме импульсного стабилизатора

Когда от стабилизатора
напряжения для авто требуется высокий коэффициент полезного действия, лучше собрать
своими руками устройство с использование импульсных составляющих. Наиболее
распространенной является ниже представленная схема МАХ771 (или аналогов 770,
772).

Стабилизатор
импульсного типа на выходе имеет мощность в 15 ватт. Элементы цепи R1 и R2
разделяют показатели напряжения на точках выход. В случае, когда оно становится
выше базового, импульсные выпрямители просто снижаются его выходное значение. В
обратном случае прибор будет, напротив, увеличивать данный параметр на выходе.

Монтаж и установка
своими руками импульсного стабилизатора напряжения для светодиодов в авто
разумна, когда его показатель превышает 16 вольт. При возникновении повышенного
падения нагрузки в цепь следует внедрить операционный усилитель.

Прослушивание.

Если вы обычно слушаете усилители со стабилизаторами на LM317 и им подобным, то прослушивание усилителя со стабилизатором без обратной связи поначалу может вызвать у вас шок!

Первое, что вас удивит — кажущаяся потеря динамики. Я считаю, что LM317 добавляет «лишней скорости звуку», искажая тем самым истинное звучание фонограммы. Закрытое прослушивание показало, что стабилизаторы без ОС удаляют  из звука весь мусор, который привносит LM317.

Потратьте немного времени на привыкание к новому звуку. На это уйдет не больше часа. Но я уверен, что вы будете восхищенны конечным результатом.

Для меня это было сравнимо с тем, когда я первый раз попробовал сырую рыбу.

Просто забудьте про ваши предрассудки!

Теперь немного сравнительных тестов. Я сравнивал стабилизатор на LM317, на лампах и стабилизатор без обратной связи.

1. LM317 как стабилизатор цепей накала и LM317 с двухзвенным фильтром помех. Последний вариант дает более детальный звук.

2. LM371 как стабилизатор цепей накала против безоосного стабилизатора. Второй вариант дает большую динамику и повышает детальность в верхнем диапазоне, что приводит к расширению стереобазы.

3. Выпрямитель на кенотроне и стабилизатор на лампах против безоосного стабилизатора анодного напряжения. Второй вариант даёт в звучании большую динамику и детальность. Ламповый стабилизатор дал более «жирный» звук.

Для получения максимального эффекта необходимо использовать для питания каждой лампы отдельный стабилизатор. Это несколько удорожает, усложняет и утяжеляет конструкцию. Но, поверьте мне, оно того стоит!

Кроме этого я провел много сравнительных прослушиваний для конденсаторов. В результате я остановился на пленочных конденсаторах фирмы WIMA. Я услышал четкие различия в звучании между плёночными и электролитическими конденсаторами. Пленочные гораздо предпочтительнее.

В своей системе я могу на слух отличить какие используются конденсаторы — пленочные или электролитические даже в цепях накала ламп.

Если вы хотите получить достойный результат, будьте готовы использовать качественные материалы!

Статья подготовлена по материалам журнала AudoiXpress.

Удачного творчества!

Замечание от главного редактора «РАДИОГАЗЕТЫ»: мнение редакции может частично или полностью не совпадать с мнением авторов статей.

Так как приходят вопросы по реализации описанных схем на доступных элементах, для примера привожу схему собранную и опробованную в работе.

Здесь интегральный источник тока J310 заменён на более доступную микросхему LM317L, включенную по схеме стабилизатора тока. Можно использовать и источники тока на полевых транзисторах.

Резистор R3 задаёт выходное напряжение (подбирается). Качество стабилизации этой схемы сильно зависит от параметров транзистора Т1. Сюда надо выбрать транзистор с максимальной крутизной и минимальным сопротивлением открытого канала. Отлично показал себя  CEP50N06. Из более доступных стоит попробовать IRFZ44.

Важно иметь в виду, что управляющее напряжение на транзисторе порядка 3,5-4В и для нормальной работы источника тока необходимо напряжение около 3,5В. Поэтому разница между входным и выходным напряжениями такого стабилизатора должна быть не менее 8В! Это несколько снижает КПД этой схемы и при больших токах нагрузки требует использования радиаторов приличных размеров

Настоящего аудиофила такие трудности не остановят

Какой выбрать стабилизатор напряжения на 220В для дачи?

  • Существуют различные критерии выбора стабилизаторов
  • «куплю такой, как у соседа». Преимущество данного способа — экономия времени на выбор модели, гарантия её работы при вашем сетевом напряжении.
    Недостаток заключается в том, что даже самый лучший сосед по даче может ошибаться, да и работающие потребители энергии могут отличаться.
    В любом случае рекомендуем погуглить отзывы желанной модели, чтобы потом не сожалеть уже после покупки.
  • «куплю такой, какой рекомендовал электрик». Хороший способ, но тоже имеющий недостатки.
    Дело в том, что многие электрики ошибаются ещё больше дачных соседей.
    Да, они могут быть классными специалистами пятого разряда, с 30-летним опытом прокладке электрики и комплектации электрощитка.
    Да, они наверняка проведут замеры входного напряжения и скажут пределы его колебания.
    Но никакой электрик полностью не будет разбираться во всем ассортименте стабилизаторов напряжения.
    Пишем по своему опыту. Многие электрики советуют на дачу или самую популярную и недорогую марку Ресанта или
    же самую известную российскую — Штиль. Не будем очернять эти 2 марки и перечислять их недостатки. Скажем лишь, что есть много более достойных марок.
  • «куплю такой, какой рекомендуют на форумах». Прекрасный способ. Особенно, если отзывы по моделям стабилизаторов оставлены реальными их владельцами.
    Недостаток заключается в возможных отличиях состояния электросетей.
    Допустим, кто-то купил Ресанту, она у него отработала год и он пишет какая она замечательная.
    Если копнем глубже, то может оказаться, что работала она при входном напряжении не ниже 180 вольт.
    А ведь если у вас напряжение на входе будет 140 вольт, то мощность упадёт в 2 раза.
    И даже если стабилизатор и будет работать, то ресурс его при постоянных перегрузках упадёт.
  • «куплю такой, какой рекомендуют продавцы». Чудесный способ. Особенно, если нарвётесь на честного продавца с широким выбором стабилизаторов.
    Советуем не лениться и пообщаться хотя бы с тремя продавцами.
    Причём вначале немного изучить матчасть, чтобы легко распознать некомпетентного впаривателя.
    И дабы избежать ненужного расхода средств, сделайте замеры входного напряжения.
    Особенно вечером и в выходные дни. В период, когда наибольшее потребление электроэнергии.
    Прикиньте по мощности нагрузки, которая будет работать одновременно.
    Решите для себя с типом — напольный или настенный.
    Насколько важен дисплей и параметры, которые он отображает.
    И звоните в специализированные магазины по продаже стабилизаторов напряжения.
    Яндекс вам в помощь!

Параметры питания светодиодов

У светодиодов, кроме номинального тока существует ещё один важный параметр – прямое падение напряжения. Роль этого параметра также существенна, именно поэтому его указывают в первом ряду технических параметров полупроводникового прибора.

Чтобы через p-n переход начал протекать ток, к нему нужно приложить какое-то минимальное прямое напряжение Uмин.пр.. Значение минимального прямого напряжения указывается в документации светодиода и отражается на графике вольт — амперных характеристик (ВАХ).

На зеленом участке ВАХ светодиода видно, что только при достижении Uмин.пр. начинает протекать ток Iпр. Дальнейший незначительный рост Uпр приводит к резкому росту Iпр. Именно поэтому даже небольшие перепады напряжения свыше Uмакс..пр. губительны для кристалла светодиода. В момент превышения Uмакс.пр. ток достигает своего пика и происходит разрушение кристалла. Для каждого типа светодиодов существует номинальный ток и соответствующее ему напряжение (паспортные данные), при которых прибор должен отработать заявленный срок службы.

Легко о простом. Сила тока, напряжение и их стабилизация

От напряжения зависит, насколько стремительно электроны движутся по проводнику. Многие страстные любители жёсткого компьютерного разгона увеличивают напряжение ядра центрального процессора, благодаря чему тот начинает функционировать быстрее.

Сила тока – это плотность движения электронов внутри электрического проводника. Данный параметр чрезвычайно важен радиоэлементам, работающим по принципу термоэлектронной вторичной эмиссии, в частности, источникам света. Если площадь поперечного сечения проводника не в состоянии пропустить поток электронов, избыток тока начинает выделяться в виде тепла, вызывая значительный перегрев детали.


Плазменная дуга от высокого напряжения

Для лучшего понимания процесса проанализируем плазменную дугу (на её основе работает электроподжег газовых плит и котлов). При очень высоком напряжении скорость свободных электронов до такой степени велика, что они могут легко «пролетать» расстояние между электродами, формируя плазменный мостик.

А это электронагреватель. При прохождении через него электронов они передают свою энергию нагревательному элементу. Чем выше сила тока, тем плотнее поток электронов, тем сильнее нагревается термоэлемент.

Для чего необходима стабилизация тока и напряжения

Любой радиоэлектронный компонент, будь то лампочка или центральный процессор компьютера, требует для оптимальной работы чётко лимитированное количество электронов, которое течёт по проводникам.

Поскольку речь в нашей статье идёт о стабилизаторе для светодиодов, о них и поговорим.

При всех своих преимуществах светодиоды имеют один минус – высокая чувствительность к параметрам питания. Даже умеренное превышение силы и напряжения может привести к выгоранию светоизлучающего материала и выходу из строя диода.

Сейчас очень модно переделывать систему освещения автомобиля под LED освещение. Их цветовая температура намного ближе к естественному освещению, чем у ксенона и ламп накаливания, что значительно меньше утомляет водителя при длительных поездках.

Однако это решение требуется особый технический подход. Номинальный ток питания автомобильного LED-диода – 0,1-0,15 мА, а пусковой аккумулятора – сотни ампер. Этого хватит, чтобы выжечь очень много дорогостоящих элементов освещения. Что бы этого избежать используют стабилизатор 12 вольт для светодиодов в авто.

Ампераж в автомобильной сети постоянно меняется. Например, автомобильный кондиционер «кушает» до 30 ампер, при его отключении электроны, «выделенные» на его работу уже не вернутся назад в генератор и аккумулятор, а перераспределятся между остальными электроприборами. Если лампе накаливания, рассчитанной на 1-3 А дополнительные 300 мА роли не сыграют, то диоду с током питания 150 мА несколько таких скачков могут стать фатальными.

Ради гарантии длительной работы автомобильных светодиодов используют стабилизатор тока на lm317 для мощных светодиодов.

Чистый вход

Я хотел получить чистое входное напряжение по максимуму очистив его от гармоник и исключив все переходные процессы. Дело в том, что все стабилизаторы имеют некоторую ёмкость между входом и выходом. Плюс помехи могут проникнуть на выход стабилизатора через цепи обратной связи или общий провод. Потому на входе стабилизатора нам требуется иметь максимально чистый сигнал.

Звучит немного утопически? Как получить «чистое» напряжение на входе стабилизатора?RC или LC-фильтры могут значительно снизить гармоники в выпрямленном напряжении.
А какой сигнал считать достаточно чистым?

Довольно популярны в ламповых усилителях выпрямители на кенотронах, которые в силу своих конструктивных особенностей являются несимметричными, однако же ничего…звучат эти усилители!

Чтобы получить минимальный уровень гармоник в выпрямленном напряжении я экспериментировал с одно и двухзвенными RC-фильтрами, установленными после первого фильтрующего конденсатора.

Как и ожидалось, добавление одного звена даёт наибольший прирост в качестве звучания усилителя.
Второе звено также даёт заметный вклад. Дальнейшее увеличение количества звеньев на звук существенно не влияет, а вот на массо-габаритные показатели очень.

Результаты измерений:

Как видно, существенно уменьшают не только верхние гармоники, но и основные пульсации также существенно затухают. Что и требовалось. К сожалению, моё оборудование не позволяет точно измерить уровень фона в присутствии сигнала. Кроме основой гармоники уровень других гармоник составил ниже 10 мВ.

Дополнительное звено в фильтре может снизить ещё на 20дБ уровень всех гармоник выше 200Гц. Но они и так уже на уровне шума стабилизатора.
Упрощенное моделирование стабилизатора на мощном FET-транзисторе показало уровень подавления низкочастотных составляющих на уровне 100дБ и 40 дБ для гармоник 100 кГц и выше.

Такие впечатляющие цифры вряд ли будут достигнуты на практике из-за паразитных ёмкостей монтажа, наводок со стороны сети и прочих негативных факторов.

Поэтому я решил считать нормальными результаты: подавление 60дБ на нижних частотах и 20дБ на высоких. Получается, что пульсации частотой 50Гц и амплитудой 100 мВ будут ослаблены до уровня 0,1мВ

Подавление ВЧ-гармоник не столь важно, так как они очень хорошо ослабляются RC-фильтрами

О сервисе и доп. опциях

И еще один совет, не упомянутый в статьях выше

Обращайте внимание на уровень сервиса, гарантийного и послегарантийного обслуживания, на дополнительные опции стабилизатора. Например, это может быть встроенный байпас или дополнительная защита от импульсных перенапряжений

Встроенная в стабилизатор молниезащита спасет подключенные электроприборы от поломки при попадании молнии в сеть.

Если вы живете в небольшом городе или планируется установить стабилизатор на даче,
то убедитесь, что недалеко от вас находится сервисный центр по обслуживанию и ремонту выбранной марки.
Как правило у крупных и уважающих себя производителей имеется развитая сеть сервисных центров.
Читаете отзывы покупателей на специализированных форумах, Яндекс-маркете.

Советы по выбору от ГК «Полигон»

Ну и наконец основные идеи из последней, 7-й статьи, под привычным названием «Как выбрать стабилизатор напряжения?».
Питерский производитель однофазных и трёхфазных стабилизаторов марок Каскад из Сатурна, как и большинство других производителей, рекомендуют
выбирать стабилизатор по типу сети и с учетом мощности нагрузки.
Также рекомендует учитывать уровень надежности устройства.
По мнению, ГК «Полигон» отдать предпочтение лучше релейным или электромеханическим стабилизатором.

Примечательно, что именно такие типы стабилизаторов и выпускаются этим производителем.

Пример стабилизации напряжения на LM317

Допустим надо подать на микросхему 12 вольт и отрегулировать его до 5. Исходя из формулы, приведенной выше, для того, чтобы LM317 выдал 5 вольт и выступал в роли регулятора напряжения, значение R2 должно быть 720 Ом.

Соберите указанную выше схему. Затем с помощью мультиметра проверьте выходное напряжение, поместив его щупы на конденсатор емкостью 1 мкФ. Если схема собрана правильно, то на её выходе будет около 5 вольт.

Теперь замените резистор R2 и установите на его место номинал со значением 1,5 кОм. Теперь на выходе должно быть около 10 В. Это преимущество этих миросхем. Вы можете настроить их на любое напряжение в пределах диапазона, указанного в его характеристиках.

Принцип работы

Соберем простой стабилизатор напряжения используя LM317 согласно схеме.

Подключим на вход Vin источник постоянного питания. Как уже было написано ранее, к этим контактам надо подать входное напряжение, которое микросхема затем понизит в зависимости от нагрузки. Оно должно быть больше, чем на выходе.

Допустим используя эту схему надо получить 5 В нагрузке. Следовательно, на вход Vin надо подать больше чем 5 вольт. Как правило, если микросхема LM317, не является регулятором с малым падением надо, чтобы входное напряжение примерно на 2 вольта было выше выходного. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Контакт Adj позволяет отрегулировать напряжение на выходе до уровня, который мы хотим.Рассчитаем, какое значение сопротивления R2 даст на выходе устройства 5 вольт. Используя формулу для выходного напряжения можно узнать значение сопротивления R2.

Так как сопротивление R1 равно 240 Ом, а выходное напряжение равно 5 В, то R2 согласно формуле будет равно 720 Ом.  Таким образом, при значении R2 =720 Ом, LM317 будет выдавать 5 В, при подаче на её вход более 5 Вольт.

Драйвер тока

Драйвер тока (LED Driver) поддерживает ток и напряжение в цепи нагрузки в независимости от поданного на него постоянного питания. Известно, что светодиод является полупроводниковым прибором, который следует запитать током, указанным в характеристиках светодиода.

Используя схему стабилизации как показано в DataSheet  можно собрать на LM317 простую схему драйвера тока.

Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. У маломощных светодиодов ток потребления составляет порядка 20 мА или 0,02 А. Для подбора необходимого сопротивления используют формулу, где Iout это ток на выходе микросхемы, необходимый для питания светодиодов.

Используя формулу, получаем значение номинала резистора с сопротивлением 62.5 Ома. Для избежания перегрева микросхемы подбирают необходимую мощности резистора по формуле.

Собрав схему и подав питание, получают простейший драйвер стабилизации тока для светодиодов.  Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.

Номинал необходимого резистора R1, можно подобрать, используя обычный подстроечный проволочный резистор на сопротивление 0.5 кОм. Для этого сначала проверяют его сопротивление между среднем и любым из крайних выводов. С помощью мультиметра, вращая регулирующий стержень,  добиваемся значения сопротивления 500 Ом, чтобы не сжечь подключенный светодиод при включении.

Затем подключают в схему со светодиодом. Чтобывыбрать подходящий номинал резистора, после подачи питания изменяют сопротивление подстроечного резистора до требуемого тока светодиода.

Онлайн-калькулятор

Для расчета параметров радиоэлементов в схемах с LM317 в сети интернет существует множество онлайн-калькуляторов:

  • для расчета резистора R2, при известном выходном напряжении и сопротивлении резистора R1;
  • для вычисления напряжения на выходе стабилизатора, при известном сопротивлении двух резисторов (R1 и R2);
  • для расчета сопротивления и мощности резистора, при известном значении силы тока на выходе микросхемы и др.

Стабилизатор на микросхеме с 3-мя выводами

Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

  1. U вх – необработанное напряжение входа;
  2. U вых –напряжение выхода.

Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

Микросхема имеет вид:

Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации